Chitosan – A Breakout Biopolymer for Bioplastics and Bacteriostatic Stretch Films
What is Chitosan? Chitosan, pronounced, “Kite’-O-San”, is a natural biopolymer derived from chitin, the structural component that gives mushrooms their rigidity and form, crustaceans their outer shell and insects their exoskeleton. Origin and Abundance Chitin is the second most abundant natural polysaccharide in nature, after cellulose. Most fungi contain 5%-7% chitin in their cell walls. Chitin is also found in the exoskeletons of crustaceans (crabs, shrimp, lobsters) and insects in levels from 10-40%. Pronunciation Guide Chitin: Pronounced “KITE-in” (emphasis on “kite”) Deacetylation: Pronounced “dee-a-SETTLE-ay-shun” (emphasis on “dee”) Acetyl: Pronounced “A-see-tl” (emphasis on “see”) Chemical Structure and Properties Chitosan is obtained through a process called deacetylation of chitin. This involves: Removing acetyl groups (CH3OH) from the chitin molecule Creating a polymer with free amine groups (NH2) This chemical transformation gives chitosan its positive charge, differentiating it from its parent compound, chitin. Solubility: Unlike chitin, chitosan is soluble in acidic to neutral solutions, making it more versatile for various applications. Our food grade mushroom chitosan oligosaccharide is soluble in water at any pH. It is bactericidal at pH 6.4 and below. To purchase wholesale, click HERE Biocompatibility and Biodegradability: Chitosan is known for its excellent biocompatibility and biodegradability. It’s non-toxic and can be broken down by natural biological processes. Uses and Applications: Chitosan, a versatile biopolymer derived from chitin, has found widespread applications across multiple industries due to its unique properties. This biodegradable and non-toxic compound offers a range of benefits in various sectors: Healthcare and Pharmaceuticals: Chitosan’s biocompatibility makes it invaluable in medical applications. It is used in wound healing products, drug delivery systems, and as a biomaterial in tissue engineering. Its ability to promote healing and control drug release has made it a popular choice in the pharmaceutical industry. Environmental Protection: In water treatment, chitosan’s capacity to bind with heavy metals and other contaminants makes it an effective agent for purification processes. This property has led to its use in both industrial and municipal water treatment facilities. Agriculture: Farmers and agronomists utilize chitosan as a natural biostimulant and elicitor. It enhances plant growth and boosts resistance against pathogens, contributing to more sustainable agricultural practices. Food Industry: Chitosan serves multiple purposes in food production and preservation. It acts as an antimicrobial food additive and can be used to create edible films or coatings that extend the shelf life of perishable products. Beverage Production: In the alcoholic beverage industry, chitosan is employed for clarification of wines, beers, and whiskeys, helping to improve their clarity and stability. Dietary Supplements: The compound is also used in the production of dietary supplements, capitalizing on its potential health benefits. Plastics Industry: Chitosan’s biodegradable nature makes it an attractive option for developing eco-friendly plastic alternatives. The wide-ranging applications of chitosan stem from its unique combination of biocompatibility, biodegradability, non-toxicity, and positive charge. What are the benefits & functions of mushroom chitosan when combined with PLA (Polylactic Acid)? Chitosan, sourced from mushrooms, offers several interesting benefits and functions when incorporated into polylactic acid (PLA) formulas. PLA is a biodegradable polymer derived from renewable sources such as corn starch or sugarcane, commonly used in bioplastics. Here’s how mushroom chitosan can enhance PLA: Polylactic acid (PLA) is a widely used bioplastic derived from renewable resources like corn starch or sugarcane. While PLA is biodegradable, its degradation rate in natural environments can be slow. Chitosan, a natural polymer derived from crustacean shells, has been found to enhance the biodegradability of PLA when used as a composite material. Benefits of Chitosan-PLA Composites Improved Biodegradation: Chitosan can accelerate the degradation process of PLA, making the composite more eco-friendly by improving its biodegradability in natural environments. Reduced Environmental Impact: By enhancing the biodegradability of PLA, chitosan-PLA composites can help reduce the accumulation of plastic waste in landfills and oceans. Potential Applications: Chitosan-PLA composites can be used in various applications, such as packaging materials, disposable utensils, and agricultural mulch films, where biodegradability is a desirable feature. Mechanism of Biodegradation Enhancement Chitosan, being a natural polymer, is susceptible to enzymatic degradation by microorganisms in the environment. When chitosan is incorporated into PLA, it creates a more porous structure that allows for better penetration of enzymes and microorganisms. This increased surface area and accessibility facilitate the breakdown of the composite material, leading to faster biodegradation compared to pure PLA. Factors Affecting Biodegradation Rate The biodegradation rate of chitosan-PLA composites can be influenced by various factors, such as: Chitosan content: Higher concentrations of chitosan in the composite generally result in faster biodegradation. Molecular weight of chitosan: Lower molecular weight chitosan tends to degrade more quickly, leading to faster biodegradation of the composite. Environmental conditions: Temperature, humidity, and the presence of specific microorganisms can affect the rate of biodegradation in natural environments. Environmental Benefits of Chitosan-PLA Composites Reduced Carbon Footprint Chitosan-PLA composites contribute to a lower carbon footprint compared to traditional petroleum-based plastics. This reduction is primarily due to: Renewable Sourcing: Both materials are obtained from renewable resources. PLA is typically derived from corn starch or sugarcane, while chitosan is extracted from crustacean shells, a byproduct of the seafood industry. Biodegradability: The enhanced biodegradability of these composites means they break down more quickly in natural environments, releasing less greenhouse gases over time compared to persistent synthetic plastics. Energy Efficiency: The production of chitosan-PLA composites often requires less energy compared to the manufacturing of conventional plastics, further reducing their overall carbon footprint. Decreased Reliance on Fossil Fuels By utilizing renewable resources, chitosan-PLA composites help decrease dependence on fossil fuels: Resource Conservation: The use of agricultural and marine byproducts as raw materials conserves non-renewable petroleum resources. Circular Economy: These materials promote a more circular economy by repurposing waste products (like crustacean shells) into valuable materials. Reduced Extraction Impact: Less reliance on fossil fuels means reduced environmental impacts associated with oil extraction and processing. Additional Environmental Benefits Reduced Plastic Pollution: The biodegradability of chitosan-PLA composites helps mitigate the accumulation of plastic waste in ecosystems. Soil Health: When used in agricultural applications, these composites can break down into non-toxic components that may even benefit soil quality. Water